login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327716
Expansion of Product_{k>=1} B(x^k), where B(x) is the g.f. of A003823.
8
1, 1, 1, 1, 2, 3, 3, 3, 4, 6, 7, 9, 10, 12, 14, 17, 21, 23, 26, 32, 40, 45, 51, 58, 69, 80, 89, 102, 116, 135, 154, 177, 198, 224, 253, 288, 326, 361, 408, 459, 521, 583, 650, 723, 812, 909, 1009, 1122, 1244, 1393, 1547, 1716, 1898, 2101, 2326, 2575, 2845, 3132, 3456, 3809
OFFSET
0,5
COMMENTS
a(n) > 0.
LINKS
Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction.
FORMULA
G.f.: Product_{i>=1} Product_{j>=1} (1-x^(i*(5*j-2))) * (1-x^(i*(5*j-3))) / ((1-x^(i*(5*j-1))) * (1-x^(i*(5*j-4)))).
G.f.: Product_{k>=1} (1-x^k)^(-A035187(k)).
a(n) ~ c * exp(Pi*sqrt(r*n)) / n^(3/4), where r = 4*log((1+sqrt(5))/2) / (3*sqrt(5)) = 0.2869392939760026925..., c = 0.203427046022096... - Vaclav Kotesovec, Sep 24 2019, updated May 09 2020
MATHEMATICA
nmax = 60; CoefficientList[Series[Product[QPochhammer[x^(5*j - 3)] * QPochhammer[x^(5*j - 2)]/(QPochhammer[x^(5*j - 4)] * QPochhammer[x^(5*j - 1)]), {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 23 2019 *)
PROG
(PARI) N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1-x^k)^sumdiv(k, d, kronecker(5, d))))
CROSSREFS
Convolution inverse of A327688.
Sequence in context: A029066 A174522 A327719 * A327720 A327718 A035581
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 23 2019
STATUS
approved