login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{k>=1} B(x^k), where B(x) is the g.f. of A007325.
7

%I #23 May 04 2020 05:10:40

%S 1,-1,0,0,-1,0,1,0,0,0,0,-2,2,1,0,1,-1,-1,-1,-1,2,1,0,1,-1,-3,1,2,-1,

%T 0,4,-6,-2,3,-1,1,4,-1,-2,-1,2,-4,4,0,-3,1,-3,4,2,-1,3,-1,-3,-1,2,-3,

%U 1,2,-6,-3,12,-7,3,11,-7,-4,7,-10,-1,7,2,-16,11,2,-10,14,-4,3,-3

%N Expansion of Product_{k>=1} B(x^k), where B(x) is the g.f. of A007325.

%H Vaclav Kotesovec, <a href="/A327688/b327688.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Seiichi Manyama)

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Rogers-RamanujanContinuedFraction.html">Rogers-Ramanujan Continued Fraction.</a>

%F G.f.: Product_{i>=1} Product_{j>=1} (1-x^(i*(5*j-1))) * (1-x^(i*(5*j-4))) / ((1-x^(i*(5*j-2))) * (1-x^(i*(5*j-3)))).

%F G.f.: Product_{k>=1} (1-x^k)^A035187(k).

%o (PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-x^k)^sumdiv(k, d, kronecker(5, d))))

%Y Cf. A007325, A035187, A307757, A327686, A327690, A327691, A327716.

%K sign,look

%O 0,12

%A _Seiichi Manyama_, Sep 22 2019