login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327688
Expansion of Product_{k>=1} B(x^k), where B(x) is the g.f. of A007325.
7
1, -1, 0, 0, -1, 0, 1, 0, 0, 0, 0, -2, 2, 1, 0, 1, -1, -1, -1, -1, 2, 1, 0, 1, -1, -3, 1, 2, -1, 0, 4, -6, -2, 3, -1, 1, 4, -1, -2, -1, 2, -4, 4, 0, -3, 1, -3, 4, 2, -1, 3, -1, -3, -1, 2, -3, 1, 2, -6, -3, 12, -7, 3, 11, -7, -4, 7, -10, -1, 7, 2, -16, 11, 2, -10, 14, -4, 3, -3
OFFSET
0,12
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Seiichi Manyama)
Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction.
FORMULA
G.f.: Product_{i>=1} Product_{j>=1} (1-x^(i*(5*j-1))) * (1-x^(i*(5*j-4))) / ((1-x^(i*(5*j-2))) * (1-x^(i*(5*j-3)))).
G.f.: Product_{k>=1} (1-x^k)^A035187(k).
PROG
(PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-x^k)^sumdiv(k, d, kronecker(5, d))))
KEYWORD
sign,look
AUTHOR
Seiichi Manyama, Sep 22 2019
STATUS
approved