login
A327674
Number of colored compositions of n using all colors of an n-set such that the color patterns for parts i are sorted and have i (distinct) colors (in arbitrary order).
2
1, 1, 3, 19, 121, 1041, 11191, 130663, 1731969, 25778161, 432791371, 7752723771, 151553121193, 3178030999729, 71244609480591, 1716351868658911, 43661944977384961, 1173984102030774753, 33302371396771085779, 991402105480284394531, 30912472614894951462681
OFFSET
0,3
COMMENTS
Differs from A293840 and from A294253 first at n = 6.
LINKS
FORMULA
a(n) = A327673(n,n).
EXAMPLE
a(3) = 19: 3abc, 3acb, 3bac, 3bca, 3cab, 3cba, 2ab1c, 2ac1b, 2ba1c, 2bc1a, 2ca1b, 2cb1a, 1a2bc, 1a2cb, 1b2ac, 1b2ca, 1c2ab, 1c2ba, 1a1b1c.
MAPLE
b:= proc(n, i, k, p) option remember;
`if`(n=0, p!, `if`(i<1, 0, add(binomial(k^i, j)*
b(n-i*j, min(n-i*j, i-1), k, p+j)/j!, j=0..n/i)))
end:
a:= n-> add(b(n$2, i, 0)*(-1)^(n-i)*binomial(n, i), i=0..n):
seq(a(n), n=0..21);
MATHEMATICA
b[n_, i_, k_, p_] := b[n, i, k, p] =
If[n == 0, p!, If[i < 1, 0, Sum[Binomial[k^i, j]*
b[n - i j, Min[n - i j, i - 1], k, p + j]/j!, {j, 0, n/i}]]];
a[n_] := Sum[b[n, n, i, 0] (-1)^(n-i) Binomial[n, i], {i, 0, n}];
Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Aug 01 2021, after Alois P. Heinz *)
CROSSREFS
Main diagonal of A327673.
Sequence in context: A294252 A294253 A293840 * A318811 A352299 A074572
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 21 2019
STATUS
approved