login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = floor(3*n*r) - 3*floor(n*r), where r = sqrt(8).
5

%I #12 Sep 15 2019 13:56:56

%S 0,2,1,1,0,0,2,2,1,1,0,0,2,2,1,1,0,0,2,2,1,1,0,0,2,2,1,1,0,0,2,2,1,1,

%T 0,2,2,1,1,0,0,2,2,1,1,0,0,2,2,1,1,0,0,2,2,1,1,0,0,2,2,1,1,0,0,2,2,1,

%U 0,0,2,2,1,1,0,0,2,2,1,1,0,0,2,2,1,1

%N a(n) = floor(3*n*r) - 3*floor(n*r), where r = sqrt(8).

%H Clark Kimberling, <a href="/A327310/b327310.txt">Table of n, a(n) for n = 0..10000</a>

%F a(n) = floor(3*n*r) - 3*floor(n*r), where r = sqrt(8).

%t r = Sqrt[8]; z = 300;

%t t = Table[Floor[3 n*r] - 3 Floor[n*r], {n, 0, z}]

%Y The positions of 0's, 1's and 2's in {a(n) : n > 0} are given by A327311, A327312 and A327313.

%K nonn,easy

%O 0,2

%A _Clark Kimberling_, Sep 07 2019