login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327295
Numbers k such that e(k) > 1 and k == e(k) (mod lambda(k)), where e(k) = A051903(k) is the maximal exponent in prime factorization of k.
4
4, 12, 16, 48, 80, 112, 132, 208, 240, 1104, 1456, 1892, 2128, 4144, 5852, 12208, 17292, 18544, 21424, 25456, 30160, 45904, 78736, 97552, 106384, 138864, 153596, 154960, 160528, 289772, 311920, 321904, 399212, 430652, 545584, 750064, 770704, 979916, 1037040, 1058512
OFFSET
1,1
COMMENTS
The condition e(k) > 1 excludes primes and Carmichael numbers.
Numbers n such that e(k) > 1 and b^k == b^e(k) (mod k) for all b.
These are numbers k such that A276976(k) = e(k) > 1.
Are there infinitely many such numbers? Are all such numbers even?
A number k is a term if and only if k is e(k)-Knödel number with e(k) > 1. So they may have the name nonsquarefree e(k)-Knodel numbers k.
It seems that if k is in this sequence, then e(k) = A007814(k) and k/2^e(k) is squarefree.
Conjecture: there are no composite numbers m > 4 such that m == e(m) (mod phi(m)). By Lehmer's totient conjecture, there are no such squarefree numbers.
Problem: are there odd numbers n such that e(n) > 1 and n == e(n) (mod ord_{n}(2)), where ord_{n}(2) = A002326((n-1)/2)? These are odd numbers n such that 2^n == 2^e(n) (mod n) with e(n) > 1.
Numbers k for which A051903(k) > 1 and A219175(k) = A329885(k). - Antti Karttunen, Dec 11 2019
LINKS
EXAMPLE
The number 4 = 2^2 is a term, because e(4) = A051903(4) = 2 > 1 and 4 == 2 (mod lambda(4)), where lambda(4) = A002322(4) = 2.
MATHEMATICA
Select[Range[10^5], (e = Max @@ Last /@ FactorInteger[#]) > 1 && Divisible[# -e, CarmichaelLambda[#]] &] (* Amiram Eldar, Dec 05 2019 *)
PROG
(PARI) isok(n) = ! issquarefree(n) && (Mod(n, lcm(znstar(n)[2])) == vecmax(factor(n)[, 2])); \\ Michel Marcus, Dec 05 2019
KEYWORD
nonn
AUTHOR
Thomas Ordowski, Dec 05 2019
EXTENSIONS
More terms from Amiram Eldar, Dec 05 2019
STATUS
approved