login
A327043
Expansion of Product_{k>=1} 1/((1 - x^k) * (1 - x^(2*k)) * (1 - x^(3*k)) * (1 - x^(4*k))).
5
1, 1, 3, 5, 11, 16, 32, 47, 84, 124, 205, 298, 477, 681, 1044, 1484, 2211, 3097, 4516, 6261, 8948, 12295, 17273, 23511, 32597, 43975, 60187, 80601, 109114, 144999, 194423, 256584, 341008, 447178, 589558, 768398, 1005854, 1303450, 1694815, 2184666, 2823229
OFFSET
0,3
COMMENTS
Differs from A006169.
LINKS
FORMULA
a(n) ~ 5^(5/2) * exp(5*Pi*sqrt(n/2)/3) / (288*2^(1/4)*n^(7/4)).
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[1/((1 - x^k) * (1 - x^(2*k)) * (1 - x^(3*k)) * (1 - x^(4*k))), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 16 2019
STATUS
approved