login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326979
BII-numbers of T_1 set-systems.
17
0, 1, 2, 3, 7, 8, 9, 10, 11, 15, 25, 27, 30, 31, 42, 43, 45, 47, 51, 52, 53, 54, 55, 59, 60, 61, 62, 63, 75, 79, 91, 94, 95, 107, 109, 111, 115, 116, 117, 118, 119, 123, 124, 125, 126, 127, 128, 129, 130, 131, 135, 136, 137, 138, 139, 143, 153, 155, 158, 159
OFFSET
1,3
COMMENTS
A set-system is a finite set of finite nonempty sets. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_1 condition means that the dual is a (strict) antichain, meaning that none of its edges is a subset of any other.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
EXAMPLE
The sequence of all T_1 set-systems together with their BII-numbers begins:
0: {}
1: {{1}}
2: {{2}}
3: {{1},{2}}
7: {{1},{2},{1,2}}
8: {{3}}
9: {{1},{3}}
10: {{2},{3}}
11: {{1},{2},{3}}
15: {{1},{2},{1,2},{3}}
25: {{1},{3},{1,3}}
27: {{1},{2},{3},{1,3}}
30: {{2},{1,2},{3},{1,3}}
31: {{1},{2},{1,2},{3},{1,3}}
42: {{2},{3},{2,3}}
43: {{1},{2},{3},{2,3}}
45: {{1},{1,2},{3},{2,3}}
47: {{1},{2},{1,2},{3},{2,3}}
51: {{1},{2},{1,3},{2,3}}
52: {{1,2},{1,3},{2,3}}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
dual[eds_]:=Table[First/@Position[eds, x], {x, Union@@eds}];
stableQ[u_, Q_]:=!Apply[Or, Outer[#1=!=#2&&Q[#1, #2]&, u, u, 1], {0, 1}];
Select[Range[0, 100], UnsameQ@@dual[bpe/@bpe[#]]&&stableQ[dual[bpe/@bpe[#]], SubsetQ]&]
CROSSREFS
BII-numbers of T_0 set-systems are A326947.
T_1 set-systems are counted by A326965, A326961 (covering), A326972 (unlabeled), and A326974 (unlabeled covering).
BII-numbers of set-systems whose dual is a weak antichain are A326966.
Sequence in context: A299497 A047534 A353651 * A326874 A118374 A344624
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 13 2019
STATUS
approved