login
A326819
Irregular triangle read by rows; for n >= 0, the n-th row corresponds to the elements of the set {(n-k) AND k, k = 0..n}, in ascending order (where AND denotes the bitwise AND operator).
4
0, 0, 0, 1, 0, 0, 1, 2, 0, 2, 0, 1, 3, 0, 0, 1, 2, 4, 0, 2, 4, 0, 1, 3, 4, 5, 0, 4, 0, 1, 2, 5, 6, 0, 2, 6, 0, 1, 3, 7, 0, 0, 1, 2, 4, 8, 0, 2, 4, 8, 0, 1, 3, 4, 5, 8, 9, 0, 4, 8, 0, 1, 2, 5, 6, 8, 9, 10, 0, 2, 6, 8, 10, 0, 1, 3, 7, 8, 9, 11, 0, 8, 0, 1, 2, 4, 9, 10, 12
OFFSET
0,8
COMMENTS
For any n >= 0, the n-th row:
- has sum A328564(n),
- has apparently length A002487(n+1),
- has first element 0,
- has last element A104594(n).
LINKS
Rémy Sigrist, Table of n, a(n) for n = 0..9851 (rows n = 0..512)
EXAMPLE
Table begins:
0;
0;
0, 1;
0;
0, 1, 2;
0, 2;
0, 1, 3;
0;
0, 1, 2, 4;
0, 2, 4;
0, 1, 3, 4, 5;
0, 4;
0, 1, 2, 5, 6;
0, 2, 6;
0, 1, 3, 7;
...
MAPLE
T:= n-> sort([{seq(Bits[And](n-k, k), k=0..n)}[]])[]:
seq(T(n), n=0..30); # Alois P. Heinz, Oct 20 2019
PROG
(PARI) row(n) = Set(apply(k -> bitand(n-k, k), [0..n]))
CROSSREFS
Cf. A326820 (OR variant), A328568 (XOR variant).
Sequence in context: A105166 A321299 A105783 * A268189 A265247 A022879
KEYWORD
nonn,tabf,look,base
AUTHOR
Rémy Sigrist, Oct 20 2019
STATUS
approved