login
A326212
Number of sortable normal multiset partitions of weight n.
12
1, 1, 4, 15, 59, 230, 901, 3522, 13773, 53847, 210527, 823087, 3218002, 12581319, 49188823, 192312112, 751877137, 2939592383, 11492839729, 44933224559, 175674134309, 686828104551, 2685272063984, 10498530869151, 41045803846015, 160475597429847
OFFSET
0,3
COMMENTS
A multiset partition is normal if it covers an initial interval of positive integers. It is sortable if some permutation has an ordered concatenation. For example, the multiset partition {{1,2},{1,1,1},{2,2,2}} is sortable because the permutation ((1,1,1),(1,2),(2,2,2)) has concatenation (1,1,1,1,2,2,2,2), which is weakly increasing.
LINKS
FORMULA
A255906(n) = a(n) + A326211(n).
G.f.: ((1 - x)*(1 - 2*x) - x^2*P(x))/(2*(1 - x)*(1 - 2*x) - (1 - 3*x + 4*x^2)*P(x)) where P(x) is the g.f. of A000041. - Andrew Howroyd, May 11 2023
EXAMPLE
The a(0) = 1 through a(3) = 15 multiset partitions:
{} {{1}} {{1,1}} {{1,1,1}}
{{1,2}} {{1,1,2}}
{{1},{1}} {{1,2,2}}
{{1},{2}} {{1,2,3}}
{{1},{1,1}}
{{1},{1,2}}
{{1,1},{2}}
{{1},{2,2}}
{{1,2},{2}}
{{1},{2,3}}
{{1,2},{3}}
{{1},{1},{1}}
{{1},{1},{2}}
{{1},{2},{2}}
{{1},{2},{3}}
MATHEMATICA
lexsort[f_, c_]:=OrderedQ[PadRight[{f, c}]];
allnorm[n_]:=If[n<=0, {{}}, Function[s, Array[Count[s, y_/; y<=#]+1&, n]]/@Subsets[Range[n-1]+1]];
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Length[Select[Sort[#, lexsort]&/@Join@@mps/@allnorm[n], OrderedQ[Join@@#]&]], {n, 0, 5}]
PROG
(PARI) seq(n) = my(p=1/eta(x + O(x*x^n))); Vec(((1 - x)*(1 - 2*x) - x^2*p)/(2*(1 - x)*(1 - 2*x) - (1 - 3*x + 4*x^2)*p)) \\ Andrew Howroyd, May 11 2023
CROSSREFS
Sortable set partitions are A011782.
Unsortable normal multiset partitions are A326211.
Crossing normal multiset partitions are A326277.
Sequence in context: A377955 A007342 A017951 * A199210 A129155 A219312
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 19 2019
EXTENSIONS
Terms a(10) and beyond from Andrew Howroyd, May 11 2023
STATUS
approved