login
A326027
Number of subsets of {1..n} whose geometric mean is an integer.
28
0, 1, 2, 3, 6, 7, 8, 9, 12, 19, 20, 21, 28, 29, 30, 31, 40, 41, 70, 71, 74, 75, 76, 77, 108, 123, 124, 211, 214, 215, 216, 217, 332, 333, 334, 335, 592, 593, 594, 595, 612, 613, 614, 615, 618, 639, 640, 641, 1160, 1183, 1324, 1325, 1328, 1329, 2176, 2177, 2196
OFFSET
0,3
EXAMPLE
The a(1) = 1 through a(9) = 19 subsets:
{1} {1} {1} {1} {1} {1} {1} {1} {1}
{2} {2} {2} {2} {2} {2} {2} {2}
{3} {3} {3} {3} {3} {3} {3}
{4} {4} {4} {4} {4} {4}
{1,4} {5} {5} {5} {5} {5}
{1,2,4} {1,4} {6} {6} {6} {6}
{1,2,4} {1,4} {7} {7} {7}
{1,2,4} {1,4} {8} {8}
{1,2,4} {1,4} {9}
{2,8} {1,4}
{1,2,4} {1,9}
{2,4,8} {2,8}
{4,9}
{1,2,4}
{1,3,9}
{2,4,8}
{3,8,9}
{4,6,9}
{3,6,8,9}
MATHEMATICA
Table[Length[Select[Subsets[Range[n]], IntegerQ[GeometricMean[#]]&]], {n, 0, 10}]
CROSSREFS
First differences are A082553.
Partitions whose geometric mean is an integer are A067539.
Strict partitions whose geometric mean is an integer are A326625.
Subsets whose average is an integer are A051293.
Sequence in context: A003605 A344128 A132188 * A255527 A316156 A319737
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 14 2019
STATUS
approved