OFFSET
0,2
COMMENTS
More generally, the following sums are equal:
(1) Sum_{n>=0} binomial(n+k-1, n) * r^n * (q^n + p)^n / (1 + p*q^n*r)^(n+k),
(2) Sum_{n>=0} binomial(n+k-1, n) * r^n * (q^n - p)^n / (1 - p*q^n*r)^(n+k),
FORMULA
G.f.: Sum_{n>=0} binomial(n+3,n) * x^n * ((1+x)^n + 1)^n / (1 + x*(1+x)^n)^(n+4).
G.f.: Sum_{n>=0} binomial(n+3,n) * x^n * ((1+x)^n - 1)^n / (1 - x*(1+x)^n)^(n+4).
G.f.: Sum_{n>=0} binomial(n+3,n) * x^n * Sum_{k=0..n} binomial(n,k) * ( (1+x)^n - (1+x)^k )^(n-k).
G.f.: Sum_{n>=0} binomial(n+3,n) * x^n * Sum_{k=0..n} binomial(n,k) * ( (1+x)^n + (1+x)^k )^(n-k) * (-1)^k.
G.f.: Sum_{n>=0} binomial(n+3,n) * x^n * Sum_{k=0..n} binomial(n,k) * Sum_{j=0..n-k} (-1)^j * binomial(n-k,j) * (1 + x)^((n-j)*(n-k)).
FORMULAS INVOLVING TERMS.
a(n) = Sum_{i=0..n} binomial(n-i+3,n-i) * Sum_{j=0..n-i} Sum_{k=0..n-i-j} (-1)^k * binomial(n-i,j) * binomial(n-i-j,k) * binomial((n-i-j)*(n-i-k),i).
a(n) = Sum_{i=0..n} binomial(n-i+3,n-i) * Sum_{j=0..n-i} Sum_{k=0..n-i-j} binomial((n-i-j)*(n-i-k),i) * (-1)^j * (n-i)! / ((n-i-j-k)!*j!*k!).
EXAMPLE
G.f.: A(x) = 1 + 4*x + 14*x^2 + 40*x^3 + 155*x^4 + 596*x^5 + 2954*x^6 + 14784*x^7 + 83955*x^8 + 494060*x^9 + 3112246*x^10 + 20505484*x^11 + 141656697*x^12 + ...
such that
A(x) = 1/(1+x)^4 + 4*x*((1+x) + 1)/(1 + x*(1+x))^5 + 10*x^2*((1+x)^2 + 1)^2/(1 + x*(1+x)^2)^6 + 20*x^3*((1+x)^3 + 1)^3/(1 + x*(1+x)^3)^7 + 35*x^4*((1+x)^4 + 1)^4/(1 + x*(1+x)^4)^8 + 56*x^5*((1+x)^5 + 1)^5/(1 + x*(1+x)^5)^9 + 84*x^6*((1+x)^6 + 1)^6/(1 + x*(1+x)^6)^10 + 120*x^7*((1+x)^7 + 1)^7/(1 + x*(1+x)^7)^11 + ...
also,
A(x) = 1/(1-x)^4 + 4*x*((1+x) - 1)/(1 - x*(1+x))^5 + 10*x^2*((1+x)^2 - 1)^2/(1 - x*(1+x)^2)^6 + 20*x^3*((1+x)^3 - 1)^3/(1 - x*(1+x)^3)^7 + 35*x^4*((1+x)^4 - 1)^4/(1 - x*(1+x)^4)^8 + 56*x^5*((1+x)^5 - 1)^5/(1 - x*(1+x)^5)^9 + 84*x^6*((1+x)^6 - 1)^6/(1 - x*(1+x)^6)^10 + 120*x^7*((1+x)^7 - 1)^7/(1 - x*(1+x)^7)^11 + ...
PROG
(PARI) {a(n) = my(A = sum(m=0, n+1, binomial(m+3, m) * x^m*((1+x +x*O(x^n) )^m - 1)^m/(1 - x*(1+x +x*O(x^n) )^m )^(m+4) )); polcoeff(A, n)}
for(n=0, 35, print1(a(n), ", "))
(PARI) {a(n) = sum(i=0, n, binomial(n-i+3, n-i) * sum(j=0, n-i, sum(k=0, n-i-j, (-1)^k * binomial(n-i, j) * binomial(n-i-j, k) * binomial((n-i-j)*(n-i-k), i) )))}
for(n=0, 35, print1(a(n), ", "))
(PARI) {a(n) = sum(i=0, n, binomial(n-i+3, n-i) * sum(j=0, n-i, sum(k=0, n-i-j, (-1)^j * binomial((n-i-j)*(n-i-k), i) * (n-i)! / ((n-i-j-k)!*j!*k!) )))}
for(n=0, 35, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 02 2019
STATUS
approved