login
A325638
Numbers m such that sigma(m) can be obtained as the base-2 carryless product of 2m and some k.
4
6, 28, 456, 496, 6552, 8128, 30240, 31452, 32760, 429240, 2178540, 7505976, 23569920, 33550336, 45532800, 142990848, 1379454720
OFFSET
1,1
COMMENTS
Numbers m such that A000203(m) = A048720(2m, k) for some k.
Numbers m for which A091255(2m, sigma(m)) = 2m.
Conjecture: all terms are even. If this is true, then there are no odd perfect numbers. See also conjectures in A325639 and in A325808.
PROG
(PARI)
A091255sq(a, b) = fromdigits(Vec(lift(gcd(Pol(binary(a))*Mod(1, 2), Pol(binary(b))*Mod(1, 2)))), 2);
A325635(n) = A091255sq(n+n, sigma(n));
isA325638(n) = ((n+n)==A325635(n));
CROSSREFS
Subsequence of A325639.
Cf. A000396 (a subsequence).
Sequence in context: A335290 A173360 A085844 * A331752 A083387 A104511
KEYWORD
nonn,more
AUTHOR
Antti Karttunen, May 21 2019
EXTENSIONS
a(17) from Amiram Eldar, Jun 26 2024
STATUS
approved