login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325482
Number of colored set partitions of [n] where colors of the elements of subsets are distinct and in increasing order and exactly two colors are used.
2
3, 12, 41, 140, 497, 1848, 7191, 29184, 123107, 538076, 2430353, 11317644, 54229905, 266906856, 1347262319, 6965034368, 36833528195, 199037675052, 1097912385849, 6176578272780, 35409316648433, 206703355298072, 1227820993510151, 7416522514174080
OFFSET
2,1
LINKS
FORMULA
E.g.f.: 1-2*exp(x)+exp(x*(x+4)/2).
a(n) ~ n^(n/2) * exp(-1 + 2*sqrt(n) - n/2) / sqrt(2). - Vaclav Kotesovec, Sep 18 2019
EXAMPLE
a(3) = 12: 1a|2a3b, 1b|2a3b, 1a3b|2a, 1a3b|2b, 1a2b|3a, 1a2b|3b, 1a|2a|3b, 1a|2b|3a, 1b|2a|3a, 1a|2b|3b, 1b|2a|3b, 1b|2b|3a.
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1, add(b(n-j, k)*
binomial(n-1, j-1)*binomial(k, j), j=1..min(k, n)))
end:
a:= n-> (k-> add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(2):
seq(a(n), n=2..27);
MATHEMATICA
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n - j, k] Binomial[n - 1, j - 1] Binomial[k, j], {j, 1, Min[k, n]}]];
a[n_] := With[{k = 2}, Sum[b[n, k - i] (-1)^i Binomial[k, i], {i, 0, k}]];
a /@ Range[2, 27] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)
CROSSREFS
Column k=2 of A322670.
Sequence in context: A038345 A336337 A127120 * A017940 A038342 A260153
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 06 2019
STATUS
approved