OFFSET
0,2
COMMENTS
We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1) with sum 13.
EXAMPLE
The sequence of terms together with their omega-sequences (n = 2 term not shown) begins:
1:
2: 1
4: 2 1
8: 3 1
6: 2 2 1
32: 5 1
30: 3 3 1
12: 3 2 2 1
24: 4 2 2 1
48: 5 2 2 1
96: 6 2 2 1
60: 4 3 2 2 1
120: 5 3 2 2 1
240: 6 3 2 2 1
480: 7 3 2 2 1
960: 8 3 2 2 1
1920: 9 3 2 2 1
3840: 10 3 2 2 1
2520: 7 4 3 2 2 1
5040: 8 4 3 2 2 1
MATHEMATICA
omseq[n_Integer]:=If[n<=1, {}, Total/@NestWhileList[Sort[Length/@Split[#]]&, Sort[Last/@FactorInteger[n]], Total[#]>1&]];
da=Table[Total[omseq[n]], {n, 10000}];
Table[If[!MemberQ[da, k], 0, Position[da, k][[1, 1]]], {k, 0, Max@@da}]
CROSSREFS
Cf. A056239, A181819, A181821, A304465, A307734, A323023, A325238, A325277, A325280, A325413, A325415.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 25 2019
STATUS
approved