login
A325334
Number of integer partitions of n with adjusted frequency depth 3 whose parts cover an initial interval of positive integers.
10
0, 0, 0, 1, 0, 0, 2, 0, 0, 1, 1, 0, 2, 0, 0, 2, 0, 0, 2, 0, 1, 2, 0, 0, 2, 0, 0, 1, 1, 0, 4, 0, 0, 1, 0, 0, 3, 0, 0, 1, 1, 0, 3, 0, 0, 3, 0, 0, 2, 0, 1, 1, 0, 0, 2, 1, 1, 1, 0, 0, 4, 0, 0, 2, 0, 0, 3, 0, 0, 1, 1, 0, 3, 0, 0, 2, 0, 0, 3, 0, 1, 1, 0, 0, 4, 0, 0
OFFSET
0,7
COMMENTS
The adjusted frequency depth of an integer partition (A325280) is 0 if the partition is empty, and otherwise it is 1 plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2).
The Heinz numbers of these partitions are given by A325374.
FORMULA
a(n) = A007862(n) - 1.
EXAMPLE
The first 30 terms count the following partitions:
3: (21)
6: (321)
6: (2211)
9: (222111)
10: (4321)
12: (332211)
12: (22221111)
15: (54321)
15: (2222211111)
18: (333222111)
18: (222222111111)
20: (44332211)
21: (654321)
21: (22222221111111)
24: (333322221111)
24: (2222222211111111)
27: (222222222111111111)
28: (7654321)
30: (5544332211)
30: (444333222111)
30: (333332222211111)
30: (22222222221111111111)
MATHEMATICA
normQ[m_]:=Or[m=={}, Union[m]==Range[Max[m]]];
unifQ[m_]:=SameQ@@Length/@Split[m];
Table[Length[Select[IntegerPartitions[n], normQ[#]&&!SameQ@@#&&unifQ[#]&]], {n, 0, 30}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 01 2019
STATUS
approved