login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325293
E.g.f. C(x) + S(x), where C(x*y*z) + S(x*y*z) = exp( Integral Integral Integral C(x*y*z) dx dy dz ) such that C(x)^2 - S(x)^2 = 1.
0
1, 1, 4, 40, 832, 31232, 1914112, 178872320, 24185421824, 4542993268736, 1147507517751296, 379488219034550272, 160693667742004281344, 85499599518969496600576, 56242680517408749713883136, 45103267674508555161314525184, 43556364453823048960903288455168, 50105222938479119498840420930027520, 68000060622146518553982060676576706560, 107938578855000557533262550908184207294464
OFFSET
0,3
FORMULA
E.g.f. C(x) + S(x), where series C(x) and S(x) are given by
(0.a) C(x) + S(x) = Sum_{n>=0} a(n)*x^n/(n!)^3,
(0.b) C(x) = Sum_{n>=0} a(2*n)*x^(2*n)/(2*n)!^3,
(0.c) S(x) = Sum_{n>=0} a(2*n+1)*x^(2*n+1)/(2*n+1)!^3,
and satisfy the following relations.
(1.a) C(x)^2 - S(x)^2 = 1.
(1.b) C'(x)/S(x) = S'(x)/C(x) = 1/x * Integral 1/x * Integral C(x) dx dx.
(2.a) S(x) = Integral C(x)/x * Integral 1/x * Integral C(x) dx dx dx.
(2.b) C(x) = 1 + Integral S(x)/x * Integral 1/x * Integral C(x) dx dx dx.
(3.a) C(x) + S(x) = exp( Integral 1/x * Integral 1/x * Integral C(x) dx dx dx ).
(3.b) C(x) = cosh( Integral 1/x * Integral 1/x * Integral C(x) dx dx dx ).
(3.c) S(x) = sinh( Integral 1/x * Integral 1/x * Integral C(x) dx dx dx ).
Integration.
(4.a) S(x*y*z) = Integral C(x*y*z) * Integral Integral C(x*y*z) dx dy dz.
(4.b) C(x*y*z) = 1 + Integral S(x*y*z) * Integral Integral C(x*y*z) dx dy dz.
(4.c) S(x*y*z) = Integral C(x*y*z) * Integral Integral C(x*y*z) dz dy dx.
(4.d) C(x*y*z) = 1 + Integral S(x*y*z) * Integral Integral C(x*y*z) dz dy dx.
Exponential.
(5.a) C(x*y*z) + S(x*y*z) = exp( Integral Integral Integral C(x*y*z) dx dy dz ).
(5.b) C(x*y*z) = cosh( Integral Integral Integral C(x*y*z) dx dy dz ).
(5.c) S(x*y*z) = sinh( Integral Integral Integral C(x*y*z) dx dy dz ).
Derivatives.
(6.a) d/dx S(x*y*z) = C(x*y*z) * Integral Integral C(x*y*z) dy dz.
(6.b) d/dx C(x*y*z) = S(x*y*z) * Integral Integral C(x*y*z) dy dz.
(6.c) d/dy S(x*y*z) = C(x*y*z) * Integral Integral C(x*y*z) dx dz.
(6.d) d/dy C(x*y*z) = S(x*y*z) * Integral Integral C(x*y*z) dx dz.
EXAMPLE
E.g.f.: C(x) + S(x) = 1 + x + 4*x^2/2!^3 + 40*x^3/3!^3 + 832*x^4/4!^3 + 31232*x^5/5!^3 + 1914112*x^6/6!^3 + 178872320*x^7/7!^3 + 24185421824*x^8/8!^3 + 4542993268736*x^9/9!^3 + 1147507517751296*x^10/10!^3 + 379488219034550272*x^11/11!^3 + 160693667742004281344*x^12/12!^3 + 85499599518969496600576*x^13/13!^3 + 56242680517408749713883136*x^14/14!^3 + 45103267674508555161314525184*x^15/15!^3 + 43556364453823048960903288455168*x^16/16!^3 + 50105222938479119498840420930027520*x^17/17!^3 + 68000060622146518553982060676576706560*x^18/18!^3 + 107938578855000557533262550908184207294464*x^19/19!^3 + 198840485174399292764682317537473563673493504*x^20/20!^3 + ...
where C(x*y*z) + S(x*y*z) = exp( Integral Integral Integral C(x*y*z) dx dy dz )
such that C(x)^2 - S(x)^2 = 1.
The e.g.f. as a series of reduced fractional coefficients begins
C(x) + S(x) = 1 + x + 1/2*x^2 + 5/27*x^3 + 13/216*x^4 + 61/3375*x^5 + 7477/1458000*x^6 + 8734/6251175*x^7 + 1476161/4000752000*x^8 + 2166268/22785532875*x^9 + 17509575161/729137052000000*x^10 + 22619260492/3790943032078125*x^11 + 153249423734669/104811992950896000000*x^12 + ...
RELATED SERIES.
C(x) = 1 + 4*x^2/2!^3 + 832*x^4/4!^3 + 1914112*x^6/6!^3 + 24185421824*x^8/8!^3 + 1147507517751296*x^10/10!^3 + 160693667742004281344*x^12/12!^3 + 56242680517408749713883136*x^14/14!^3 + 43556364453823048960903288455168*x^16/16!^3 + 68000060622146518553982060676576706560*x^18/18!^3 + 198840485174399292764682317537473563673493504*x^20/20!^3 + ...
where C(x) = cosh( Integral 1/x * Integral 1/x * Integral C(x) dx dx dx ),
also, C(x*y*z) = cosh( Integral Integral Integral C(x*y*z) dx dy dz ).
S(x) = x + 40*x^3/3!^3 + 31232*x^5/5!^3 + 178872320*x^7/7!^3 + 4542993268736*x^9/9!^3 + 379488219034550272*x^11/11!^3 + 85499599518969496600576*x^13/13!^3 + 45103267674508555161314525184*x^15/15!^3 + 50105222938479119498840420930027520*x^17/17!^3 + 107938578855000557533262550908184207294464*x^19/19!^3 + ...
where S(x) = sinh( Integral 1/x * Integral 1/x * Integral C(x) dx dx dx ),
also, S(x*y*z) = sinh( Integral Integral Integral C(x*y*z) dx dy dz ).
PROG
(PARI) {a(n) = my(C=1, S=x); for(i=1, n,
S = intformal( C/x * intformal( 1/x * intformal( C + x*O(x^n))));
C = 1 + intformal( S/x * intformal( 1/x * intformal( C + x*O(x^n)))); );
n!^3 * polcoeff(E = C + S, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A325290 (variant).
Sequence in context: A087047 A211035 A053514 * A121276 A013053 A055128
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 21 2019
STATUS
approved