login
A325147
Reduced Clausen numbers.
0
10, 546, 2, 46, 6630, 76670, 211659630, 6, 261870, 111418, 46, 13589784390, 524588442, 114, 1138240087314330, 2, 276742830, 26805565070, 1909802752494, 3210, 15370, 177430547680928732190, 358, 5760551069383110, 76004922, 1126, 4347631610092420338, 81366
OFFSET
1,1
COMMENTS
Let P(m) denote the prime factors of m and C(m) = Clausen(m-1, 1) (cf. A160014) then Product_{p in P(C(m)) setminus P(m)} p is in this sequence provided P(m) is a subset of P(C(m)).
EXAMPLE
Let n = 561 then P(561) = {3, 11, 17} and P(Clausen(560,1)) = {2, 3, 5, 11, 17, 29, 41, 71, 113, 281}. Since P(561) is a subset of P(Clausen(560, 1)), a(18) = 2*5*29*41*71*113*281 = 26805565070.
MAPLE
with(numtheory): a := proc(n) if isweakCarmichael(n) then # cf. A225498 and A160014
mul(m, m in factorset(Clausen(n-1, 1)) minus factorset(n)) else NULL fi end:
seq(a(n), n=2..1350);
MATHEMATICA
pf[n_] := FactorInteger[n][[All, 1]];
Clausen[0, _] = 1; Clausen[n_, k_] := Times @@ (Select[Divisors[n], PrimeQ[# + k]&] + k);
weakCarmQ[n_] := If[EvenQ[n] || PrimeQ[n], Return[False], pf[n] == (pf[n] ~Intersection~ pf[Clausen[n - 1, 1]])];
f[n_] := Times @@ Complement[pf[Clausen[n - 1, 1]], pf[n]];
f /@ Select[Range[2, 2000], weakCarmQ] (* Jean-François Alcover, Jul 21 2019 *)
CROSSREFS
Weak Carmichael numbers are A225498. Clausen numbers are in A160014.
A324977 is a subsequence.
Sequence in context: A180359 A289200 A014382 * A370733 A035308 A327412
KEYWORD
nonn
AUTHOR
Peter Luschny, May 21 2019
STATUS
approved