OFFSET
0,5
COMMENTS
Two positive integers are divisible if the first divides the second, and they have a binary carry if the positions of 1's in their reversed binary expansion overlap.
a(2k+1) = a(2k), since an odd number and any divisor will overlap in the last digit. Additionally, a(2k+2) > a(2k+1) because the pair {1,2k+2} is always valid. Therefore, every term appears exactly twice. - Charlie Neder, Apr 02 2019
EXAMPLE
The a(2) = 1 through a(11) = 9 pairs:
{1,2} {1,2} {1,2} {1,2} {1,2} {1,2} {1,2} {1,2} {1,2} {1,2}
{1,4} {1,4} {1,4} {1,4} {1,4} {1,4} {1,4} {1,4}
{2,4} {2,4} {1,6} {1,6} {1,6} {1,6} {1,6} {1,6}
{2,4} {2,4} {1,8} {1,8} {1,8} {1,8}
{2,4} {2,4} {2,4} {2,4}
{2,8} {2,8} {2,8} {2,8}
{4,8} {4,8} {4,8} {4,8}
{1,10} {1,10}
{5,10} {5,10}
MATHEMATICA
Table[Length[Select[Tuples[Range[n], 2], Divisible@@Reverse[#]&&Intersection[Position[Reverse[IntegerDigits[#[[1]], 2]], 1], Position[Reverse[IntegerDigits[#[[2]], 2]], 1]]=={}&]], {n, 0, 20}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 29 2019
STATUS
approved