%I #17 Jul 27 2019 14:57:51
%S 1,2,4,5,10,12,14,15,30,35,40,42,47,49,51,52,104,119,134,139,154,159,
%T 164,166,181,186,191,193,198,200,202,203,406,458,510,525,577,592,607,
%U 612,664,679,694,699,714,719,724,726,778,793,808,813,828,833,838,840
%N Number of subsets of {1...n} with no binary carries.
%C A binary carry of two positive integers is an overlap of the positions of 1's in their reversed binary expansion. For example, the binary representations of {2,5,8} are:
%C 2 = 10,
%C 5 = 101,
%C 8 = 1000,
%C and since there are no columns with more than one 1, {2,5,8} is counted under a(8).
%H Alois P. Heinz, <a href="/A325095/b325095.txt">Table of n, a(n) for n = 0..16383</a>
%F a(2^n - 1) = A000110(n + 1).
%e The a(1) = 1 through a(7) = 15 subsets:
%e {} {} {} {} {} {} {}
%e {1} {1} {1} {1} {1} {1} {1}
%e {2} {2} {2} {2} {2} {2}
%e {1,2} {3} {3} {3} {3} {3}
%e {1,2} {4} {4} {4} {4}
%e {1,2} {5} {5} {5}
%e {1,4} {1,2} {6} {6}
%e {2,4} {1,4} {1,2} {7}
%e {3,4} {2,4} {1,4} {1,2}
%e {1,2,4} {2,5} {1,6} {1,4}
%e {3,4} {2,4} {1,6}
%e {1,2,4} {2,5} {2,4}
%e {3,4} {2,5}
%e {1,2,4} {3,4}
%e {1,2,4}
%p b:= proc(n, t) option remember; `if`(n=0, 1, b(n-1, t)+
%p `if`(Bits[And](n, t)=0, b(n-1, Bits[Or](n, t)), 0))
%p end:
%p a:= n-> b(n, 0):
%p seq(a(n), n=0..63); # _Alois P. Heinz_, Mar 28 2019
%t binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
%t stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
%t Table[Length[Select[Subsets[Range[n]],stableQ[#,Intersection[binpos[#1],binpos[#2]]!={}&]&]],{n,0,10}]
%Y Cf. A000110, A019565, A050315, A080572, A247935, A267610, A267700.
%Y Cf. A325094, A325096, A325097, A325100, A325103, A325104, A325105.
%K nonn,look
%O 0,2
%A _Gus Wiseman_, Mar 27 2019
%E a(16)-a(55) from _Alois P. Heinz_, Mar 28 2019