login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325011
Triangle read by rows: T(n,k) is the number of achiral colorings of the facets of a regular n-dimensional orthotope using exactly k colors. Row n has 2n columns.
9
1, 0, 1, 4, 3, 0, 1, 8, 28, 36, 15, 0, 1, 13, 84, 282, 465, 360, 105, 0, 1, 19, 192, 1110, 3711, 7080, 7560, 4200, 945, 0, 1, 26, 381, 3320, 17875, 60159, 126728, 165900, 130725, 56700, 10395, 0, 1, 34, 687, 8484, 66525, 340929, 1158102, 2624748, 3964905, 3931200, 2453220, 873180, 135135, 0
OFFSET
1,4
COMMENTS
Also called hypercube, n-dimensional cube, and measure polytope. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is a cube with six square faces. For n=4, the figure is a tesseract with eight cubic facets. The Schläfli symbol, {4,3,...,3}, of the regular n-dimensional orthotope (n>1) consists of a four followed by n-2 threes. Each of its 2n facets is an (n-1)-dimensional orthotope. An achiral coloring is identical to its reflection.
Also the number of achiral colorings of the vertices of a regular n-dimensional orthoplex using exactly k colors.
LINKS
FORMULA
T(n,k) = Sum_{j=0..k-1} binomial(-j-2,k-j-1) * binomial(n + binomial(j+2,2)-1, n) - Sum_{j=0..k-2} binomial(j-k-1,j) * binomial(binomial(k-j,2),n).
T(n,k) = 2*A325009(n,k) - A325008(n,k) = A325008(n,k) - 2*A325010(n,k) = A325009(n,k) - A325010(n,k).
EXAMPLE
Table begins with T(1,1):
1 0
1 4 3 0
1 8 28 36 15 0
1 13 84 282 465 360 105 0
1 19 192 1110 3711 7080 7560 4200 945 0
1 26 381 3320 17875 60159 126728 165900 130725 56700 10395 0
For T(2,3)=3, each of the three chiral pairs has two opposite edges with the same color.
MATHEMATICA
Table[Sum[Binomial[-j-2, k-j-1] Binomial[n + Binomial[j+2, 2]-1, n], {j, 0, k-1}] - Sum[Binomial[j-k-1, j] Binomial[Binomial[k-j, 2], n], {j, 0, k-2}], {n, 1, 10}, {k, 1, 2n}] // Flatten
CROSSREFS
Cf. A325008 (oriented), A325009 (unoriented), A325010 (chiral), A325007 (up to k colors).
Other n-dimensional polytopes: A325003 (simplex), A325019 (orthoplex).
Sequence in context: A131106 A298739 A346366 * A294188 A331956 A325019
KEYWORD
nonn,tabf,easy
AUTHOR
Robert A. Russell, May 27 2019
STATUS
approved