Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Oct 01 2019 07:16:06
%S 1,2,1,3,6,1,4,18,10,1,5,40,55,15,1,6,75,200,126,21,1,7,126,560,700,
%T 252,28,1,8,196,1316,2850,1996,462,36,1,9,288,2730,9261,11376,5004,
%U 792,45,1,10,405,5160,25480,50127,38550,11440,1287,55,1,11,550,9075,61776,181027,225225,116160,24310,2002,66,1
%N Array read by descending antidiagonals: A(n,k) is the number of achiral colorings of the facets of a regular n-dimensional orthotope using up to k colors.
%C Also called hypercube, n-dimensional cube, and measure polytope. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is a cube with six square faces. For n=4, the figure is a tesseract with eight cubic facets. The Schläfli symbol, {4,3,...,3}, of the regular n-dimensional orthotope (n>1) consists of a four followed by n-2 threes. Each of its 2n facets is an (n-1)-dimensional orthotope. An achiral coloring is identical to its reflection.
%C Also the number of achiral colorings of the vertices of a regular n-dimensional orthoplex using up to k colors.
%H Robert A. Russell, <a href="/A325007/b325007.txt">Table of n, a(n) for n = 1..325</a>
%H Robin Chapman, answer to <a href="https://math.stackexchange.com/q/5732/">Coloring the faces of a hypercube</a>, Math StackExchange, September 30, 2010.
%F A(n,k) = binomial(binomial(k+1,2) + n-1, n) - binomial(binomial(k,2),n).
%F A(n,k) = Sum_{j=1..2*n} A325011(n,j) * binomial(k,j).
%F A(n,k) = 2*A325005(n,k) - A325004(n,k) = (A325004(n,k) - 2*A325006(n,k)) / 2 = A325005(n,k) + A325006(n,k).
%F G.f. for row n: Sum{j=1..2*n} A325011(n,j) * x^j / (1-x)^(j+1).
%F Linear recurrence for row n: T(n,k) = Sum_{j=0..2*n} binomial(-2-j,2*n-j) * T(n,k-1-j).
%F G.f. for column k: 1/(1-x)^binomial(k+1,2) - (1+x)^binomial(k,2).
%e Array begins with A(1,1):
%e 1 2 3 4 5 6 7 8 9 10 ...
%e 1 6 18 40 75 126 196 288 405 550 ...
%e 1 10 55 200 560 1316 2730 5160 9075 15070 ...
%e 1 15 126 700 2850 9261 25480 61776 135675 275275 ...
%e 1 21 252 1996 11376 50127 181027 559728 1529892 3784627 ...
%e 1 28 462 5004 38550 225225 1053304 4119648 13942908 41918800 ...
%e 1 36 792 11440 116160 881595 5263336 25794288 107427420 390891160 ...
%e For a(2,2)=6, all colorings are achiral: two with just one of the colors, two with one color on just one edge, one with opposite colors the same, and one with opposite colors different.
%t Table[Binomial[Binomial[d-n+2,2]+n-1,n]-Binomial[Binomial[d-n+1,2],n],{d,1,11},{n,1,d}] // Flatten
%o (PARI) a(n, k) = binomial(binomial(k+1, 2)+n-1, n) - binomial(binomial(k, 2), n)
%o array(rows, cols) = for(x=1, rows, for(y=1, cols, print1(a(x, y), ", ")); print(""))
%o /* Print initial 6 rows and 8 columns of array as follows: */
%o array(6, 8) \\ _Felix Fröhlich_, May 30 2019
%Y Cf. A325004 (oriented), A325005 (unoriented), A325006 (chiral), A325011 (exactly k colors).
%Y Other n-dimensional polytopes: A325001 (simplex), A325015 (orthoplex).
%Y Rows 1-2 are A000027, A002411; column 2 is A186783(n+2).
%K nonn,tabl,easy
%O 1,2
%A _Robert A. Russell_, May 27 2019