login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324993
Decimal expansion of zeta'(-1, 1/3).
3
0, 9, 3, 7, 2, 6, 2, 0, 1, 7, 6, 0, 7, 7, 9, 4, 2, 7, 4, 8, 4, 2, 0, 0, 8, 9, 9, 1, 3, 3, 1, 9, 2, 8, 6, 7, 3, 6, 8, 8, 3, 7, 2, 8, 6, 9, 3, 8, 7, 3, 8, 0, 2, 1, 5, 2, 5, 4, 4, 8, 0, 9, 2, 5, 4, 5, 4, 3, 4, 9, 9, 7, 9, 5, 0, 9, 2, 3, 3, 5, 1, 1, 7, 1, 6, 7, 2, 7, 4, 9, 4, 7, 5, 5, 4, 0, 7, 6, 0, 4, 0, 2, 9, 8, 5, 1
OFFSET
0,2
LINKS
J. Miller and V. Adamchik, Derivatives of the Hurwitz Zeta Function for Rational Arguments, Journal of Computational and Applied Mathematics 100 (1998) 201-206. [contains a large number of typos]
Eric Weisstein's World of Mathematics, Hurwitz Zeta Function, formula 23
FORMULA
Equals -Pi/(18*sqrt(3)) - log(3)/72 + PolyGamma(1, 1/3) / (12*sqrt(3)*Pi) - Zeta'(-1)/3.
A324993 + A324994 = -log(3)/36 - 2*Zeta'(-1)/3.
EXAMPLE
0.093726201760779427484200899133192867368837286938738021525448092545434...
MAPLE
evalf(Zeta(1, -1, 1/3), 120);
evalf(-Pi/(18*sqrt(3)) - log(3)/72 + Psi(1, 1/3) / (12*sqrt(3)*Pi) - Zeta(1, -1)/3, 120);
MATHEMATICA
RealDigits[Derivative[1, 0][Zeta][-1, 1/3], 10, 120][[1]]
N[With[{k=1}, -Sqrt[3] * (9^k - 1) * BernoulliB[2*k] * Pi / (9^k * 8*k) - 3*BernoulliB[2*k] * Log[3] / 9^k / 4 / k - (-1)^k * PolyGamma[2*k-1, 1/3] / 2 / Sqrt[3] / (6*Pi)^(2*k-1) - (9^k-3)*Zeta'[-2*k+1]/2/9^k], 120]
PROG
(PARI) zetahurwitz'(-1, 1/3) \\ Michel Marcus, Mar 24 2019
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Mar 23 2019
STATUS
approved