OFFSET
1,5
COMMENTS
An unlabeled rooted tree is recursively anti-transitive if no branch of a branch of any terminal subtree is a branch of the same subtree. It is an identity tree if there are no repeated branches directly under a common root.
Also the number of finitary sets with n brackets where, at any level, no element of an element of a set is an element of the same set. For example, the a(8) = 9 finitary sets are (o = {}):
{{{{{{{o}}}}}}}
{{{{o,{{o}}}}}}
{{{o,{{{o}}}}}}
{{o,{{{{o}}}}}}
{{{o},{{{o}}}}}
{o,{{{{{o}}}}}}
{o,{{o,{{o}}}}}
{{o},{{{{o}}}}}
{{o},{o,{{o}}}}
The Matula-Goebel numbers of these trees are given by A324766.
EXAMPLE
The a(4) = 1 through a(8) = 9 recursively anti-transitive rooted identity trees:
(((o))) (o((o))) ((o((o)))) (((o((o))))) ((o)(o((o))))
((((o)))) (o(((o)))) ((o)(((o)))) (o((o((o)))))
(((((o))))) ((o(((o))))) ((((o((o))))))
(o((((o))))) (((o)(((o)))))
((((((o)))))) (((o(((o))))))
((o)((((o)))))
((o((((o))))))
(o(((((o))))))
(((((((o)))))))
MATHEMATICA
iallt[n_]:=Select[Union[Sort/@Join@@(Tuples[iallt/@#]&/@IntegerPartitions[n-1])], UnsameQ@@#&&Intersection[Union@@#, #]=={}&];
Table[Length[iallt[n]], {n, 10}]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Mar 17 2019
STATUS
approved