%I #13 Sep 16 2019 00:58:26
%S 0,0,2,4,8,15,25,41,65,100,150,225,327,474,678,962,1348,1884,2602,
%T 3581,4889,6644,8968,12064,16124,21476,28462,37585,49407,64747,84495,
%U 109936,142522,184226,237350,304977,390669,499169,636039,808468,1024996,1296573,1636151
%N Number of simple graphs on n unlabeled nodes with maximum degree exactly 2.
%H Andrew Howroyd, <a href="/A324740/b324740.txt">Table of n, a(n) for n = 1..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MaximumVertexDegree.html">Maximum Vertex Degree</a>
%F a(n) = A003292(n) - A008619(n).
%o (PARI) seq(n) = Vec( (1-x)*(1-x^2)/prod(k=1, n, 1 - x^k + O(x*x^n))^2 - 1/((1-x)*(1-x^2)), -n) \\ _Andrew Howroyd_, Sep 03 2019
%Y Column k=2 of A263293.
%Y A diagonal of A294217.
%Y Cf. A003292, A008619.
%K nonn
%O 1,3
%A _Andrew Howroyd_, Sep 03 2019