login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324613
G.f. A(x) satisfies: 1 + 4*x = Sum_{n>=0} (4^n + q*A(x))^n * x^n / (1 + 4^n*q*x*A(x))^(n+1), where q = sqrt(128/3).
3
1, 416, 8029248, 2188617320448, 9219890831036553216, 618951997873353332851408896, 664612512289053409746943478501867520, 11417979606286992596912657092388671906224537600, 3138550827867416043144948384462236556766662742325141176320, 13803492680625189520462719913413857044944571496910203607451430729809920, 971334446046166058747728167330455811906524833831361460284791253155406264015674933248
OFFSET
0,2
LINKS
FORMULA
Let q = sqrt(128/3), then g.f. A(x) satisfies:
(1) 1 + 4*x = Sum_{n>=0} (4^n + q * A(x))^n * x^n / (1 + 4^n * q * x*A(x))^(n+1).
(2) 1 + 4*x = Sum_{n>=0} (4^n - q * A(x))^n * x^n / (1 - 4^n * q * x*A(x))^(n+1).
EXAMPLE
G.f.: A(x) = 1 + 416*x + 8029248*x^2 + 2188617320448*x^3 + 9219890831036553216*x^4 + 618951997873353332851408896*x^5 + 664612512289053409746943478501867520*x^6 + ...
Let q = sqrt(128/3), then
1 + 4*x = 1/(1+x*q*A(x)) + (4 + q*A(x))*x/(1 + 4*x*q*A(x))^2 + (4^2 + q*A(x))^2*x^2/(1 + 4^2*x*q*A(x))^3 + (4^3 + q*A(x))^3*x^3/(1 + 4^3*x*q*A(x))^4 + (4^4 + q*A(x))^4*x^4/(1 + 4^4*x*q*A(x))^5 + (4^5 + q*A(x))^5*x^5/(1 + 4^5*x*q*A(x))^6 + (4^6 + q*A(x))^6*x^6/(1 + 4^6*x*q*A(x))^7 + ...
and also
1 + 4*x = 1/(1-x*q*A(x)) + (4 - q*A(x))*x/(1 - 4*x*q*A(x))^2 + (4^2 - q*A(x))^2*x^2/(1 - 4^2*x*q*A(x))^3 + (4^3 - q*A(x))^3*x^3/(1 - 4^3*x*q*A(x))^4 + (4^4 - q*A(x))^4*x^4/(1 - 4^4*x*q*A(x))^5 + (4^5 - q*A(x))^5*x^5/(1 - 4^5*x*q*A(x))^6 + (4^6 - q*A(x))^6*x^6/(1 - 4^6*x*q*A(x))^7 + ...
PROG
(PARI) /* Requires high precision */
{a(n) = my(q=sqrt(128/3), A=[1, 416, 0]); for(i=0, n,
A=concat(A, 0); A[#A-1] = round( polcoeff( sum(n=0, #A, (4^n + q * Ser(A))^n * x^n / (1 + 4^n * q * x*Ser(A))^(n+1) ), #A)/512)); A[n+1]}
for(n=0, 10, print1(a(n), ", "))
CROSSREFS
Cf. A324299.
Sequence in context: A246897 A223422 A239191 * A202527 A224557 A080467
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 16 2019
STATUS
approved