login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324339
a(n) = A246707(A005940(1+n)), where A005940 is the Doudna sequence, and A246707 is the expansion of phi(-q) * phi(-q^2) * phi(-q^3) * phi(-q^6) in powers of q.
2
-2, -2, 2, 6, 4, -14, -2, 6, 0, -12, -4, 42, 2, -50, 2, 6, -8, -16, 0, 36, 0, -84, 4, 42, 14, -62, -2, 150, -24, -158, -2, 6, 4, -24, 8, 48, 16, -112, 0, 36, 0, -96, 0, 252, 0, -300, -4, 42, -10, -114, -14, 186, -28, -434, 2, 150, 0, -312, 24, 474, 38, -482, 2, 6, -4, -28, -4, 72, -8, -168, -8, 48, 0, -144, -16, 336, 8, -400, 0, 36, 16
OFFSET
0,1
FORMULA
a(n) = A246707(A005940(1+n)).
PROG
(PARI)
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
A246707(n) = { local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^2 + A) * eta(x^3 + A)^2 * eta(x^6 + A) / (eta(x^4 + A) * eta(x^12 + A)), n)); }; \\ From A246707
A324339(n) = A246707(A005940(1+n));
CROSSREFS
KEYWORD
sign
AUTHOR
Antti Karttunen, Feb 23 2019
STATUS
approved