login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324236
Expansion of e.g.f. 1 / (1 - Sum_{k>=1} p(k)*x^k/k!), where p(k) = number of partitions of k (A000041).
2
1, 1, 4, 21, 149, 1317, 13985, 173209, 2451844, 39044784, 690862770, 13446615722, 285510978887, 6567419023617, 162686428939423, 4317885767971448, 122241788335870103, 3677030054440996775, 117111150680951037907, 3937135961534144480556, 139328182441566999124409
OFFSET
0,3
LINKS
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * p(k) * a(n-k).
a(n) ~ c * d^n * n!, where d = 1.769410350604938716841596133605930996231892313627986058432895713767619380283... and c = 0.6329116440270047042622953043644713645679657251851049998748689226219... - Vaclav Kotesovec, Sep 03 2019
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-k)*
binomial(n, k)*combinat[numbpart](k), k=1..n))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Sep 02 2019
MATHEMATICA
nmax = 20; CoefficientList[Series[1/(1 - Sum[PartitionsP[k] x^k/k!, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] PartitionsP[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 02 2019
STATUS
approved