login
A323378
Square array read by antidiagonals: T(n,k) = Kronecker symbol (-n/k), n >= 1, k >= 1.
0
1, 1, 1, 1, 0, -1, 1, -1, 1, 1, 1, 0, 0, 0, 1, 1, -1, -1, 1, -1, -1, 1, 0, 1, 0, -1, 0, -1, 1, 1, 0, 1, 1, 0, -1, 1, 1, 0, -1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1
OFFSET
1,1
COMMENTS
If A215200 is arranged into a square array A215200(n,k) = kronecker symbol(n/k) with n >= 0, k >= 1, then this sequence gives the other half of the array.
Note that there is no such n such that the n-th row and the n-th column are the same.
LINKS
Eric Weisstein's World of Mathematics, Kronecker Symbol.
EXAMPLE
Table begins
1, 1, -1, 1, 1, -1, -1, 1, 1, 1, ... ((-1/k) = A034947)
1, 0, 1, 0, -1, 0, -1, 0, 1, 0, ... ((-2/k) = A188510)
1, -1, 0, 1, -1, 0, 1, -1, 0, 1, ... ((-3/k) = A102283)
1, 0, -1, 0, 1, 0, -1, 0, 1, 0, ... ((-4/k) = A101455)
1, -1, 1, 1, 0, -1, 1, -1, 1, 0, ... ((-5/k) = A226162)
1, 0, 0, 0, 1, 0, 1, 0, 0, 0, ... ((-6/k) = A109017)
1, 1, -1, 1, -1, -1, 0, 1, 1, -1, ... ((-7/k) = A175629)
1, 0, 1, 0, -1, 0, -1, 0, 1, 0, ... ((-8/k) = A188510)
...
PROG
(PARI) T(n, k) = kronecker(-n, k)
CROSSREFS
Cf. A215200.
The first rows are listed in A034947, A188510, A102283, A101455, A226162, A109017, A175629, A188510, ...
Sequence in context: A143200 A166282 A047999 * A054431 A164381 A106470
KEYWORD
sign,tabl
AUTHOR
Jianing Song, Jan 12 2019
STATUS
approved