login
A323093
Number of integer partitions of n where no part is 2^k times any other part, for any k > 0.
14
1, 1, 2, 2, 4, 4, 6, 9, 12, 13, 18, 23, 29, 37, 49, 55, 71, 84, 104, 126, 153, 185, 221, 261, 317, 375, 446, 523, 623, 721, 854, 994, 1168, 1357, 1579, 1833, 2126, 2455, 2843, 3270, 3766, 4320, 4980, 5687, 6521, 7444, 8498, 9684, 11039, 12540, 14262
OFFSET
0,3
EXAMPLE
The a(1) = 1 through a(8) = 12 integer partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (32) (33) (43) (44)
(31) (311) (51) (52) (53)
(1111) (11111) (222) (61) (62)
(3111) (322) (71)
(111111) (331) (332)
(511) (611)
(31111) (2222)
(1111111) (3311)
(5111)
(311111)
(11111111)
MATHEMATICA
stableQ[u_, Q_]:=!Apply[Or, Outer[#1=!=#2&&Q[#1, #2]&, u, u, 1], {0, 1}];
Table[Length[Select[IntegerPartitions[n], stableQ[#, IntegerQ[Log[2, #1/#2]]&]&]], {n, 30}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 04 2019
STATUS
approved