login
A322906
The number of zeros in the fundamental Pisano period of the 3-Fibonacci numbers A006190 modulo n.
24
1, 1, 1, 1, 4, 1, 2, 2, 1, 4, 2, 1, 4, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 4, 4, 1, 2, 4, 2, 2, 2, 2, 2, 2, 1, 4, 2, 2, 2, 4, 2, 1, 2, 2, 1, 2, 2, 2, 4, 2, 2, 1, 1, 2, 2, 2, 4, 2, 2, 1, 2, 2, 2, 4, 2, 2, 2, 1, 2, 2, 2, 4, 4, 2, 2, 2, 2, 1, 2, 1, 4, 2, 2, 2, 1, 2
OFFSET
1,5
COMMENTS
a(n) is the multiplicative order of A006190(A322907(n)+1) modulo n.
a(n) has value 1, 2 or 4. This is because A006190(k,m+1)^4 == 1 (mod A006190(k,m)).
Conjecture: For primes p == 1, 9, 17, 25, 49, 81 (mod 104), the probability of a(p^e) taking on the value 1, 2, 4 is 1/6, 2/3, 1/6, respectively; for primes p == 29, 53, 61, 69, 77, 101 (mod 104), the probability of a(p^e) taking on the value 1, 4 is 1/2, 1/2, respectively.
LINKS
FORMULA
For n > 2, T(n,k) = 4 iff A322907(n) is odd; 1 iff A322907(n) is even but not divisible by 4; 2 iff A322907(n) is divisible by 4.
For primes p == 3, 23, 27, 35, 43, 51 (mod 52), a(p^e) = 1.
For primes p == 5, 21, 33, 37, 41, 45 (mod 52), a(p^e) = 4.
For primes p == 7, 11, 15, 19, 31, 47 (mod 52), a(p^e) = 2.
a(13^e) = 4. a(2^e) = 1 if e = 1, 2 and 2 if e >= 3.
a(n) = A175182(n)/A322907(n).
PROG
(PARI) A006190(m) = ([3, 1; 1, 0]^m)[2, 1]
a(n) = my(i=1); while(A006190(i)%n!=0, i++); znorder(Mod(A006190(i+1), n))
CROSSREFS
Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = k*x(n+1) + x(n). Then the periods, ranks and the ratios of the periods to the ranks modulo a given integer n are given by:
k = 1: A001175 (periods), A001177 (ranks), A001176 (ratios).
k = 2: A175181 (periods), A214028 (ranks), A214027 (ratios).
k = 3: A175182 (periods), A322907 (ranks), this sequence (ratios).
Sequence in context: A370120 A112621 A081448 * A106437 A279605 A054713
KEYWORD
nonn
AUTHOR
Jianing Song, Jan 05 2019
STATUS
approved