login
Column k=8 of triangle A257673.
3

%I #10 Jan 31 2021 08:11:04

%S 1,24,300,2624,18126,105552,539408,2485016,10518477,41482336,

%T 154055260,543239064,1830924554,5929728456,18534968236,56121729792,

%U 165117049094,473276306552,1324582728412,3626879184272,9732325392280,25631811881168,66342981204768

%N Column k=8 of triangle A257673.

%H Alois P. Heinz, <a href="/A321953/b321953.txt">Table of n, a(n) for n = 8..5000</a>

%F G.f.: (-1 + Product_{k>=1} 1 / (1 - x^k)^k)^8. - _Ilya Gutkovskiy_, Jan 31 2021

%p b:= proc(n, k) option remember; `if`(n=0, 1, k*add(

%p b(n-j, k)*numtheory[sigma][2](j), j=1..n)/n)

%p end:

%p a:= n-> (k-> add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(8):

%p seq(a(n), n=8..35);

%Y Column k=8 of A257673.

%K nonn

%O 8,2

%A _Alois P. Heinz_, Nov 22 2018