OFFSET
0,4
COMMENTS
Let 4Q_2 = {x belongs to Q_2 : |x|_2 <= 1/4} and 4Q_2 + 1 = {x belongs to Q_2: |x - 1|_2 <= 1/4}. Define exp(x) = Sum_{k>=0} x^k/k! and log(x) = -Sum_{k>=1} (1 - x)^k/k over 2-adic field, then exp(x) is a one-to-one mapping from 4Q_2 to 4Q_2 + 1, and log(x) is the inverse of exp(x).
LINKS
Wikipedia, p-adic number
FORMULA
a(n) = Sum_{i=0..n-1} A321694(i)*2^i.
Conjecture: a(n) = 2*A309753(n-1). - R. J. Mathar, Aug 06 2023
EXAMPLE
a(3) = (-4 + O(2^3)) mod 8 = (-4) mod 8 = 4.
a(6) = (-4 - 4^2/2 - O(2^6)) mod 64 = (-12) mod 64 = 52.
a(10) = (-4 - 4^2/2 - 4^3/3 - 4^4/4 - O(2^10)) mod 1024 = (-292/3) mod 1024 = 244.
a(11) = (-4 - 4^2/2 - 4^3/3 - 4^4/4 - 4^5/5 - O(2^11)) mod 2048 = (-4532/15) mod 2048 = 244.
PROG
(PARI) a(n) = if(n, lift(log(-3 + O(2^n))), 0);
CROSSREFS
KEYWORD
nonn
AUTHOR
Jianing Song, Nov 17 2018
STATUS
approved