login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321598
a(n) = Sum_{d|n} d*binomial(d+2,3).
0
1, 9, 31, 89, 176, 375, 589, 1049, 1516, 2384, 3147, 4823, 5916, 8437, 10406, 14105, 16474, 22380, 25271, 33264, 37810, 47683, 52901, 68183, 73301, 91100, 100174, 122197, 130356, 161750, 169137, 205593, 219162, 259242, 272714, 330524, 338144, 400719, 421686, 493424
OFFSET
1,2
COMMENTS
Inverse Möbius transform of A002417.
LINKS
FORMULA
G.f.: Sum_{k>=1} x^k*(1 + 3*x^k)/(1 - x^k)^5.
G.f.: Sum_{k>=1} k*A000292(k)*x^k/(1 - x^k).
L.g.f.: -log(Product_{k>=1} (1 - x^k)^A000292(k)) = Sum_{n>=1} a(n)*x^n/n.
Dirichlet g.f.: (zeta(s-4) + 3*zeta(s-3) + 2*zeta(s-2))*zeta(s)/6.
a(n) = (2*sigma_2(n) + 3*sigma_3(n) + sigma_4(n))/6.
a(n) = Sum_{d|n} A002417(d).
Sum_{k=1..n} a(k) ~ Zeta(5) * n^5 / 30. - Vaclav Kotesovec, Feb 02 2019
MATHEMATICA
Table[Sum[d Binomial[d + 2, 3], {d, Divisors[n]}], {n, 40}]
nmax = 40; Rest[CoefficientList[Series[Sum[x^k (1 + 3 x^k)/(1 - x^k)^5, {k, 1, nmax}], {x, 0, nmax}], x]]
Table[(2 DivisorSigma[2, n] + 3 DivisorSigma[3, n] + DivisorSigma[4, n])/6, {n, 40}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 14 2018
STATUS
approved