login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321549
a(n) = Sum_{d|n} (-1)^(d-1)*d^10.
2
1, -1023, 59050, -1049599, 9765626, -60408150, 282475250, -1074791423, 3486843451, -9990235398, 25937424602, -61978820950, 137858491850, -288972180750, 576660215300, -1100586419199, 2015993900450, -3567040850373, 6131066257802, -10249991283974, 16680163512500, -26533985367846, 41426511213650
OFFSET
1,2
FORMULA
G.f.: Sum_{k>=1} (-1)^(k-1)*k^10*x^k/(1 - x^k). - Ilya Gutkovskiy, Dec 23 2018
Multiplicative with a(2^e) = 2 - (2^(10*e + 10) - 1)/1023, and a(p^e) = (p^(10*e + 10) - 1)/(p^10 - 1) for p > 2. - Amiram Eldar, Nov 04 2022
MATHEMATICA
f[p_, e_] := (p^(10*e + 10) - 1)/(p^10 - 1); f[2, e_] := 2 - (2^(10*e + 10) - 1)/1023; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 24] (* Amiram Eldar, Nov 04 2022 *)
PROG
(PARI) apply( a(n)=sumdiv(n, d, (-1)^(d-1)*d^10), [1..30]) \\ M. F. Hasler, Nov 26 2018
CROSSREFS
Cf. A321543 - A321565, A321807 - A321836 for similar sequences.
Sequence in context: A024008 A123867 A321555 * A160959 A022192 A069385
KEYWORD
sign,mult
AUTHOR
N. J. A. Sloane, Nov 23 2018
STATUS
approved