login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321544
a(n) = Sum_{d|n} (-1)^(d-1)*d^5.
3
1, -31, 244, -1055, 3126, -7564, 16808, -33823, 59293, -96906, 161052, -257420, 371294, -521048, 762744, -1082399, 1419858, -1838083, 2476100, -3297930, 4101152, -4992612, 6436344, -8252812, 9768751, -11510114, 14408200, -17732440, 20511150, -23645064, 28629152, -34636831, 39296688, -44015598
OFFSET
1,2
FORMULA
G.f.: Sum_{k>=1} (-1)^(k-1)*k^5*x^k/(1 - x^k). - Ilya Gutkovskiy, Dec 23 2018
G.f.: Sum_{n >= 1} x^n*(x^(4*n) - 26*x^(3*n) + 66*x^(2*n) - 26*x^n + 1)/(1 + x^n)^6 (note [1,26,66,26,1] is row 5 of A008292). - Peter Bala, Jan 11 2021
Multiplicative with a(2^e) = 2 - (2^(5*e + 5) - 1)/31, and a(p^e) = (p^(5*e + 5) - 1)/(p^5 - 1) for p > 2. - Amiram Eldar, Nov 04 2022
MAPLE
with(numtheory):
a := n -> add( (-1)^(d-1)*d^5, d in divisors(n) ): seq(a(n), n = 1..40);
# Peter Bala, Jan 11 2021
MATHEMATICA
f[p_, e_] := (p^(5*e + 5) - 1)/(p^5 - 1); f[2, e_] := 2 - (2^(5*e + 5) - 1)/31; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 35] (* Amiram Eldar, Nov 04 2022 *)
PROG
(PARI) apply( a(n)=sumdiv(n, d, (-1)^(d-1)*d^5), [1..30]) \\ M. F. Hasler, Nov 26 2018
CROSSREFS
Divisor sums Sum_{d|n} (-1)^(d-1)*d^k: A048272 (k = 0), A002129 (k = 1), A321543 (k = 2), A138503 (k = 3), A279395 (k = 4, unsigned), A321545 - A321551 (k = 6 to k = 12).
Cf. A321552 - A321565, A321807 - A321836 for similar sequences.
Sequence in context: A221848 A344723 A284926 * A147963 A027846 A042872
KEYWORD
sign,mult
AUTHOR
N. J. A. Sloane, Nov 23 2018
STATUS
approved