login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321290
Smallest positive number for which the 3rd power cannot be written as sum of 3rd powers of any subset of previous terms.
5
1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 17, 21, 22, 28, 29, 33, 38, 41, 48, 68, 70, 96, 124, 130, 158, 179, 239, 309, 310, 351, 468, 509, 640, 843, 900, 1251, 1576, 1640, 2305, 2444, 2989, 3410, 4575, 5758, 5998, 7490, 8602, 11657, 13017, 15553, 19150, 24411, 25365
OFFSET
1,2
COMMENTS
a(n)^3 forms a sum-free sequence.
LINKS
EXAMPLE
a(10) = 13. 3rd powers of 14, 15 and 16 can be written as sums of 3rd powers of a subset of the terms {a(1)..a(10)}:
14^3 = 2^3 + 3^3 + 8^3 + 13^3,
15^3 = 4^3 + 5^3 + 7^3 + 8^3 + 10^3 + 11^3,
16^3 = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 7^3 + 11^3 + 13^3,
17^3 cannot be written in this way, so a(11) = 17 is the next term.
PROG
(Python)
def findSum(nopt, tgt, a, smax, pwr):
if nopt==0:
return [] if tgt==0 else None
if tgt<0 or tgt>smax[nopt-1]:
return None
rv=findSum(nopt-1, tgt - a[nopt-1]**pwr, a, smax, pwr)
if rv!=None:
rv.append(a[nopt-1])
else:
rv=findSum(nopt-1, tgt, a, smax, pwr)
return rv
def A321290(n):
POWER=3 ; x=0 ; a=[] ; smax=[] ; sumpwr=0
while len(a)<n:
while True:
x+=1
lst=findSum(len(a), x**POWER, a, smax, POWER)
if lst==None:
break
rhs = " + ".join(["%d^%d"%(i, POWER) for i in lst])
print(" %d^%d = %s"%(x, POWER, rhs))
a.append(x) ; sumpwr+=x**POWER
print("a(%d) = %d"%(len(a), x))
smax.append(sumpwr)
return a[-1]
CROSSREFS
Other powers: A321266 (2), A321291 (4), A321292 (5), A321293 (6)
Sequence in context: A277992 A180968 A191847 * A274337 A107912 A190850
KEYWORD
nonn
AUTHOR
Bert Dobbelaere, Nov 02 2018
STATUS
approved