login
A321187
Triangle read by rows, T(n, k) is the determinant of the matrix [s(n,k), s(n,k+1); s(n+1,k), s(n+1,k+1)] where s is the triangle A110440 of little Schroeder numbers.
0
1, 7, 1, 71, 23, 1, 913, 456, 48, 1, 13777, 9060, 1560, 82, 1, 233119, 185805, 44262, 3950, 125, 1, 4298911, 3951927, 1188747, 151585, 8355, 177, 1, 84769393, 87024056, 31242008, 5172370, 416730, 15666, 238, 1, 1763748273, 1977448272, 815985408, 165150744, 17626140, 985068, 26936, 308, 1
OFFSET
0,2
LINKS
Fangfang Cai, Qing-Hu Hou, Yidong Sun, Arthur L.B. Yang, Combinatorial identities related to 2×2 submatrices of recursive matrices, arXiv:1808.05736 [math.CO], 2018. See Table 1.3 p. 3.
EXAMPLE
Triangle begins:
1;
7, 1;
71, 23, 1;
913, 456, 48, 1;
13777, 9060, 1560, 82, 1;
233119, 185805, 44262, 3950, 125, 1;
...
MATHEMATICA
s[n_, k_] := Sum[i (-1)^(k - i + 1) Binomial[k + 1, i] Sum[(-1)^j 2^(n + 1 - j) (2n + i - j + 1)!/((n + i - j + 1)! j! (n - j + 1)!), {j, 0, n+1}], {i, 0, k + 1}];
T[n_, k_] := Det[{{s[n, k], s[n, k+1]}, {s[n+1, k], s[n+1, k+1]}}];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 02 2019, translated from PARI *)
PROG
(PARI) s(n, k) = sum(i = 0, k+1, (i*(-1)^(k - i + 1)*binomial(k + 1, i)*sum(j=0, n+1, (-1)^j*2^(n + 1 - j)*(2*n + i - j + 1)!/((n + i - j + 1)!*j!*(n - j + 1)!)))); \\ A110440
T(n, k) = matdet([s(n, k), s(n, k+1); s(n+1, k), s(n+1, k+1)]);
CROSSREFS
Cf. A110440.
Sequence in context: A350202 A237111 A281620 * A221367 A110788 A100254
KEYWORD
nonn,tabl
AUTHOR
Michel Marcus, Oct 31 2018
STATUS
approved