login
A320967
Expansion of Product_{k>0} theta_3(q^k)/theta_4(q^k), where theta_3() and theta_4() are the Jacobi theta functions.
4
1, 4, 12, 36, 92, 220, 508, 1108, 2332, 4776, 9492, 18420, 35036, 65324, 119708, 216044, 384204, 674236, 1168968, 2003460, 3397300, 5704148, 9487740, 15642676, 25577900, 41495032, 66817812, 106837112, 169677372, 267755836, 419948980, 654799316, 1015276412, 1565765892
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Jacobi Theta Functions
FORMULA
Expansion of Product_{k>0} eta(q^(2*k))^6 / (eta(q^k)^4*eta(q^(4*k))^2).
MATHEMATICA
With[{nmax=50}, CoefficientList[Series[Product[EllipticTheta[3, 0, q^k]/EllipticTheta[4, 0, q^k], {k, 1, nmax+2}], {q, 0, nmax}], q]] (* G. C. Greubel, Oct 29 2018 *)
PROG
(PARI) m=50; q='q+O('q^m); Vec(prod(k=1, m+2, eta(q^(2*k))^6/(eta(q^k)^4* eta(q^(4*k))^2) )) \\ G. C. Greubel, Oct 29 2018
CROSSREFS
Self-convolution of A320968.
Sequence in context: A190072 A063810 A183931 * A261584 A347990 A002842
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 25 2018
STATUS
approved