login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320899
Expansion of e.g.f. exp(1/theta_4(x) - 1), where theta_4() is the Jacobi theta function.
0
1, 2, 12, 104, 1120, 14592, 221824, 3835904, 74262528, 1589016320, 37181031424, 943547716608, 25791165349888, 754934109863936, 23547020011929600, 779291847538638848, 27263652732032843776, 1005002283128197349376, 38921431600215853760512, 1579513585265275661189120
OFFSET
0,2
FORMULA
E.g.f.: exp(-1 + Product_{k>=1} (1 + x^k)/(1 - x^k)).
a(0) = 1; a(n) = Sum_{k=1..n} A015128(k)*k!*binomial(n-1,k-1)*a(n-k).
MAPLE
seq(coeff(series(factorial(n)*(exp(-1+mul((1+x^k)/(1-x^k), k=1..n))), x, n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 23 2018
MATHEMATICA
nmax = 19; CoefficientList[Series[Exp[1/EllipticTheta[4, 0, x] - 1], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[Sum[PartitionsP[k - j] PartitionsQ[j], {j, 0, k}] k! Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 19}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 23 2018
STATUS
approved