login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=1..n} k * tau(k)^2, where tau is A000005.
2

%I #10 Oct 23 2018 11:57:03

%S 1,9,21,57,77,173,201,329,410,570,614,1046,1098,1322,1562,1962,2030,

%T 2678,2754,3474,3810,4162,4254,5790,6015,6431,6863,7871,7987,9907,

%U 10031,11183,11711,12255,12815,15731,15879,16487,17111,19671,19835,22523,22695,24279

%N a(n) = Sum_{k=1..n} k * tau(k)^2, where tau is A000005.

%H Ramanujan's Papers, <a href="http://ramanujan.sirinudi.org/Volumes/published/ram17.html">Some formulas in the analytic theory of numbers</a>, Messenger of Mathematics, XLV, 1916, 81-84.

%F a(n) ~ n^2 * (3*(Pi^6*(-1 - 24*g^2 + 32*g^3 + g*(8 - 96*s1) + 16*s1 + 16*s2) - 13824*z1^3 + 576*Pi^2*z1*((-1 + 8*g)*z1 + 4*z2) - 8*Pi^4*(3*(1 - 8*g + 24*g^2 - 16*s1)*z1 - 6*z2 + 48*g*z2 + 8*z3)) + 6*(Pi^6*(1 - 8*g + 24*g^2 - 16*s1) + 576*Pi^2*z1^2 - 24*Pi^4*(-z1 + 8*g*z1 + 2*z2))*log(n) + 6*((-1 + 8*g)*Pi^6 - 24*Pi^4*z1)*log(n)^2 + 4*Pi^6*log(n)^3) / (8*Pi^8), where g is the Euler-Mascheroni constant A001620, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994, z3 = Zeta'''(2) = A201995 and s1, s2 are the Stieltjes constants, see A082633 and A086279.

%t Accumulate[Table[k*DivisorSigma[0, k]^2, {k, 1, 50}]]

%o (PARI) a(n) = sum(k=1, n, k*numdiv(k)^2); \\ _Michel Marcus_, Oct 23 2018

%Y Cf. A061502, A318755, A320897.

%Y Cf. A000005, A006218, A143127, A319085, A320895.

%K nonn

%O 1,2

%A _Vaclav Kotesovec_, Oct 23 2018