OFFSET
1,2
LINKS
Ramanujan's Papers, Some formulas in the analytic theory of numbers, Messenger of Mathematics, XLV, 1916, 81-84.
FORMULA
a(n) ~ n^2 * (3*(Pi^6*(-1 - 24*g^2 + 32*g^3 + g*(8 - 96*s1) + 16*s1 + 16*s2) - 13824*z1^3 + 576*Pi^2*z1*((-1 + 8*g)*z1 + 4*z2) - 8*Pi^4*(3*(1 - 8*g + 24*g^2 - 16*s1)*z1 - 6*z2 + 48*g*z2 + 8*z3)) + 6*(Pi^6*(1 - 8*g + 24*g^2 - 16*s1) + 576*Pi^2*z1^2 - 24*Pi^4*(-z1 + 8*g*z1 + 2*z2))*log(n) + 6*((-1 + 8*g)*Pi^6 - 24*Pi^4*z1)*log(n)^2 + 4*Pi^6*log(n)^3) / (8*Pi^8), where g is the Euler-Mascheroni constant A001620, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994, z3 = Zeta'''(2) = A201995 and s1, s2 are the Stieltjes constants, see A082633 and A086279.
MATHEMATICA
Accumulate[Table[k*DivisorSigma[0, k]^2, {k, 1, 50}]]
PROG
(PARI) a(n) = sum(k=1, n, k*numdiv(k)^2); \\ Michel Marcus, Oct 23 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 23 2018
STATUS
approved