login
A320839
Factorial expansion of sqrt(7) = Sum_{n>=1} a(n)/n!.
2
2, 1, 0, 3, 2, 2, 6, 4, 6, 2, 3, 11, 2, 8, 11, 8, 16, 5, 5, 16, 19, 5, 1, 14, 16, 7, 14, 10, 27, 12, 10, 29, 28, 19, 16, 3, 6, 4, 28, 33, 24, 21, 42, 10, 2, 45, 3, 34, 4, 1, 46, 48, 8, 5, 41, 20, 53, 17, 31, 50, 10, 6, 56, 27, 29, 18, 15, 11, 19, 49, 37, 64, 56, 51, 34, 21, 3, 27, 15, 61
OFFSET
1,1
EXAMPLE
sqrt(7) = 2 + 1/2! + 0/3! + 3/4! + 2/5! + 2/6! + 6/7! + 4/8! + 6/9! + ...
MAPLE
Digits:=200: a:=n->`if`(n=1, floor(sqrt(7)), floor(factorial(n)*sqrt(7))-n*floor(factorial(n-1)*sqrt(7))): seq(a(n), n=1..90); # Muniru A Asiru, Dec 10 2018
CROSSREFS
Cf. A010465 (decimal expansion), A010121 (continued fraction).
Cf. A009949 (sqrt(2)), A067881 (sqrt(3)), A068446 (sqrt(5)).
Sequence in context: A106384 A333119 A356582 * A094314 A353632 A365713
KEYWORD
nonn
AUTHOR
G. C. Greubel, Dec 10 2018
STATUS
approved