login
A320160
Number of series-reduced balanced rooted trees whose leaves form an integer partition of n.
20
1, 2, 3, 6, 9, 19, 31, 63, 110, 215, 391, 773, 1451, 2879, 5594, 11173, 22041, 44136, 87631, 175155, 348186, 694013, 1378911, 2743955, 5452833, 10853541, 21610732, 43122952, 86192274, 172753293, 347114772, 699602332, 1414033078, 2866580670, 5826842877, 11874508385
OFFSET
1,2
COMMENTS
A rooted tree is series-reduced if every non-leaf node has at least two branches, and balanced if all leaves are the same distance from the root.
Also the number of balanced unlabeled phylogenetic rooted trees with n leaves.
LINKS
EXAMPLE
The a(1) = 1 through a(6) = 19 rooted trees:
1 2 3 4 5 6
(11) (12) (13) (14) (15)
(111) (22) (23) (24)
(112) (113) (33)
(1111) (122) (114)
((11)(11)) (1112) (123)
(11111) (222)
((11)(12)) (1113)
((11)(111)) (1122)
(11112)
(111111)
((11)(13))
((11)(22))
((12)(12))
((11)(112))
((12)(111))
((11)(1111))
((111)(111))
((11)(11)(11))
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
phy2[labs_]:=If[Length[labs]==1, labs, Union@@Table[Sort/@Tuples[phy2/@ptn], {ptn, Select[mps[Sort[labs]], Length[#1]>1&]}]];
Table[Sum[Length[Select[phy2[ptn], SameQ@@Length/@Position[#, _Integer]&]], {ptn, IntegerPartitions[n]}], {n, 8}]
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
seq(n)={my(u=vector(n, n, 1), v=vector(n)); while(u, v+=u; u=EulerT(u)-u); v} \\ Andrew Howroyd, Oct 25 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 06 2018
EXTENSIONS
Terms a(14) and beyond from Andrew Howroyd, Oct 25 2018
STATUS
approved