login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319998
a(n) = Sum_{d|n, d is even} mu(n/d)*d, where mu(n) is Moebius function A008683.
5
0, 2, 0, 2, 0, 4, 0, 4, 0, 8, 0, 4, 0, 12, 0, 8, 0, 12, 0, 8, 0, 20, 0, 8, 0, 24, 0, 12, 0, 16, 0, 16, 0, 32, 0, 12, 0, 36, 0, 16, 0, 24, 0, 20, 0, 44, 0, 16, 0, 40, 0, 24, 0, 36, 0, 24, 0, 56, 0, 16, 0, 60, 0, 32, 0, 40, 0, 32, 0, 48, 0, 24, 0, 72, 0, 36, 0, 48, 0, 32, 0, 80, 0, 24, 0, 84, 0, 40, 0, 48, 0, 44, 0, 92, 0, 32, 0, 84, 0, 40, 0, 64, 0, 48, 0
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{d|n} A059841(d)*A008683(n/d)*d.
a(n) = A000010(n) - A319997(n).
a(2n) = 2*A000010(n), a(2n+1) = 0.
G.f.: Sum_{k>=1} 2*mu(k)*x^(2*k)/(1 - x^(2*k))^2. - Ilya Gutkovskiy, Nov 02 2018
Sum_{k=1..n} a(k) ~ c * n^2, where c = 3/(2*Pi^2) = 0.151981... . - Amiram Eldar, Nov 12 2022
MATHEMATICA
Rest[CoefficientList[Series[Sum[2*MoebiusMu[k]*x^(2*k)/(1 - x^(2*k))^2, {k, 1, 100}], {x, 0, 100}], x]] (* Vaclav Kotesovec, Nov 03 2018 *)
PROG
(PARI) A319998(n) = sumdiv(n, d, (!(d%2))*moebius(n/d)*d);
(PARI) A319998(n) = if(n%2, 0, 2*eulerphi(n/2));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 31 2018
STATUS
approved