login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319997
a(n) = Sum_{d|n, d is odd} mu(n/d)*d, where mu(n) is Moebius function A008683.
6
1, -1, 2, 0, 4, -2, 6, 0, 6, -4, 10, 0, 12, -6, 8, 0, 16, -6, 18, 0, 12, -10, 22, 0, 20, -12, 18, 0, 28, -8, 30, 0, 20, -16, 24, 0, 36, -18, 24, 0, 40, -12, 42, 0, 24, -22, 46, 0, 42, -20, 32, 0, 52, -18, 40, 0, 36, -28, 58, 0, 60, -30, 36, 0, 48, -20, 66, 0, 44, -24, 70, 0, 72, -36, 40, 0, 60, -24, 78, 0, 54, -40, 82, 0, 64, -42, 56, 0, 88
OFFSET
1,3
LINKS
FORMULA
a(n) = Sum_{d|n} A000035(d)*A008683(n/d)*d.
a(n) = A000010(n) - A319998(n).
For even n, a(n) = A000010(n) - 2*A000010(n/2); for odd n, a(n) = A000010(n).
a(2n+1) = A000010(2n+1), a(4n+2) = -A000010(4n+2), a(4n) = 0.
Multiplicative with a(2^1) = -1, a(2^e) = 0 for e > 1, and a(p^e) = (p - 1)*p^(e-1) when p is an odd prime.
G.f.: Sum_{k>=1} mu(k)*x^k*(1 + x^(2*k))/(1 - x^(2*k))^2. - Ilya Gutkovskiy, Nov 02 2018
Dirichlet g.f.: zeta(s-1)*(1-2^(1-s))/zeta(s). - R. J. Mathar, Jan 07 2021
Sum_{k=1..n} a(k) ~ c * n^2, where c = 3/(2*Pi^2) = 0.151981... . - Amiram Eldar, Nov 12 2022
PROG
(PARI) A319997(n) = sumdiv(n, d, (d%2)*moebius(n/d)*d);
(PARI) A319997(n) = if(n%2, eulerphi(n), if(n%4, -eulerphi(n), 0));
(PARI) A319997(n) = { my(f=factor(n)); prod(i=1, #f~, if(2==f[i, 1], -(1==f[i, 2]), (f[i, 1]-1)*(f[i, 1]^(f[i, 2]-1)))); };
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Antti Karttunen, Oct 31 2018
STATUS
approved