login
A319617
Number of Integer solutions to w^2 + x^2 + y^2 + z^2 < n^2; number of lattice points inside a 4-sphere of radius n.
0
0, 1, 65, 321, 1257, 2873, 6265, 11377, 20161, 31665, 48945, 71401, 102041, 139481, 188753, 247329, 323697, 409457, 516121, 640393, 789161, 955793, 1153025, 1376305, 1637929, 1921049, 2252889, 2615673, 3033665, 3483633, 3990753, 4547945, 5173145, 5840393, 6589945, 7395921, 8287297, 9238001, 10281977, 11402457, 12633145, 13929377
OFFSET
0,3
EXAMPLE
For n=2 there are 65 lattice points in Z^4 such that w^2+x^2+y^2+x^2 < 4
PROG
(Python)
for n in range (0, 51):
NumPoints=0
for w in range (-n, n+1):
for x in range (-n, n+1):
for y in range (-n, n+1):
for z in range (-n, n+1):
if w**2+x**2+y**2+z**2<n**2:
NumPoints+=1
print (n, NumPoints)
CROSSREFS
a(n) = A055410(n) - A267326(n).
Sequence in context: A165798 A158693 A365874 * A300162 A211259 A069758
KEYWORD
nonn,easy
AUTHOR
Brian J. Harrild, Sep 24 2018
STATUS
approved