login
A319473
Number of partitions of n into exactly eight nonzero decimal palindromes.
4
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 22, 28, 39, 49, 65, 80, 102, 123, 152, 179, 215, 248, 292, 331, 380, 423, 477, 522, 578, 623, 679, 721, 773, 811, 859, 889, 929, 953, 985, 1000, 1025, 1032, 1050, 1051, 1063, 1060, 1068, 1062, 1068, 1062, 1068
OFFSET
0,11
LINKS
FORMULA
a(n) = [x^n y^8] 1/Product_{j>=2} (1-y*x^A002113(j)).
MAPLE
p:= proc(n) option remember; local i, s; s:= ""||n;
for i to iquo(length(s), 2) do if
s[i]<>s[-i] then return false fi od; true
end:
h:= proc(n) option remember; `if`(n<1, 0,
`if`(p(n), n, h(n-1)))
end:
b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(t*i<n,
0, b(n, h(i-1), t)+b(n-i, h(min(n-i, i)), t-1)))
end:
a:= n-> (k-> b(n, h(n), k)-b(n, h(n), k-1))(8):
seq(a(n), n=0..100);
CROSSREFS
Column k=8 of A319453.
Cf. A002113.
Sequence in context: A307547 A182804 A242695 * A085894 A354468 A309194
KEYWORD
nonn,base
AUTHOR
Alois P. Heinz, Sep 19 2018
STATUS
approved