login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319294
Expansion of 128 * ((theta_3(q)^4 + theta_4(q)^4)/theta_2(q)^8 + (theta_4(q)^4 - theta_2(q)^4)/theta_3(q)^8) in powers of q = exp(Pi i t).
3
1, 0, 144, -5120, 70524, -626688, 4265600, -24164352, 119375370, -529539072, 2151757440, -8125793280, 28827864296, -96885780480, 310514729472, -954123868160, 2823202073655, -8074060259328, 22387521828480, -60344692402176, 158484892943628, -406368240128000, 1019049374174976
OFFSET
-2,3
LINKS
Maryna S. Viazovska, The sphere packing problem in dimension 8, arXiv preprint arXiv:1603.04246 [math.NT], 2016.
EXAMPLE
Let q = exp(Pi i t).
theta_2(q)^4 = 16*q + 64*q^3 + ... .
theta_3(q)^4 = 1 + 8*q + 24*q^2 + 32*q^3 + ... .
theta_4(q)^4 = 1 - 8*q + 24*q^2 - 32*q^3 + ... .
128 * (theta_3(q)^4 + theta_4(q)^4)/theta_2(q)^8
= q^(-2) + 16 - 132*q^2 + ... .
128 * (theta_4(q)^4 - theta_2(q)^4)/theta_3(q)^8
= 128 - 5120*q + 70656*q^2 - ... .
G.f.: q^(-2) + 144 - 5120*q + 70524*q^2 - 626688*q^3 + 4265600*q^4 - 24164352*q^5 + ... .
CROSSREFS
Cf. A000118 (theta_3(q)^4), A008438 (theta_2(q)^4/(16*q)), A096727 (theta_4(q)^4), A281373.
Sequence in context: A008376 A221127 A262788 * A233645 A086985 A371251
KEYWORD
sign
AUTHOR
Seiichi Manyama, Sep 16 2018
STATUS
approved