login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318585
Number of integer partitions of n whose sum of reciprocals squared is an integer.
6
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 7, 8, 9, 9, 10, 10, 12, 12, 13, 14, 16, 16, 18, 19, 21, 23, 26, 27, 29, 30, 34, 35, 39, 43, 48, 51, 55, 57, 63, 67, 74, 78, 84, 89, 99, 103, 112, 119, 132, 139, 148, 156, 170, 182, 199
OFFSET
1,8
COMMENTS
From David A. Corneth, Sep 03 2018: (Start)
Let a valid tuple be a tuple of positive integers whose sum of reciprocals squared is an integer. Initially one only needs to consider tuples of positive integers where each element is > 1. After that some ones could be prepended to a valid tuple to find new valid tuples.
One could define a prime tuple as a valid tuple where no proper part with elements is a valid tuple. So (1) would be a prime tuple as no proper part of (1) has elements and is a valid tuple. Other examples of prime tuples are (2, 2, 2, 2) and (2, 2, 2, 3, 3, 6).
The list of distinct elements in a tuple could be whittled down by finding for each positive integer m the least sum of a prime tuple in which that integer is. For each m, that sum is at most m^3. (End)
LINKS
EXAMPLE
The a(26) = 7 integer partitions:
(6332222222)
(44442221111)
(63322211111111)
(22222222222211)
(222222221111111111)
(2222111111111111111111)
(11111111111111111111111111)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], IntegerQ[Total[#^(-2)]]&]], {n, 30}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 29 2018
EXTENSIONS
a(61)-a(70) from Giovanni Resta, Sep 03 2018
STATUS
approved